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1 Introduction

AES stands for “Advanced Encryption Standard”. This is a cryptographic algorithm primarily developed
for and by normative bodies in the United States of America such as NIST. It is also often referred to
as the algorithm Rijndael although the AES is actually a variant of the latter.

Historically, this standard replaced its precursor, DES or ’Data Encryption Standard’1, when the latter
was declared insecure, following advances in the field of cryptanalysis and especially in the field of
miniaturization of processors.

1The DES is also known by its other name, the DEA (Data Encryption Algorithm) which in fact refers to all the
algorithmic part of the encryption contained in the standard, but which in practice coincides with the latter.
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Although DES can no longer be used, the 3-DES algorithm, still considered safe, remains widely used,
particularly in the banking industry. 3-DES consists of an iteration of three DES ciphers. Usually
cipher-decipher-cipher (’ede’ mode).

AES has a number of similarities with DES. It also uses substitution tables. However, unlike DES, AES
works by using computation over a finite field.

AES has spread into applications using cryptography. It is typically found in banking, military or
government applications and in many ’consumer’ applications that need secure encryption.

Computer scientists or computer programmers routinely implement or use applications based on the
AES encryption functions but do not necessarily know its principle (and do not need to know it) and
simply use AES encryption software libraries. Which libraries can offer guarantees or not concerning
their fidelity to the encryption standard. Theoretically, only software libraries certified as conforming to
the AES standard (and using a digital signature) should be used. If not, IT professionals implementing
AES should be able to understand the validity or otherwise of an AES software library by studying and
analyzing its source code.

In what follows, we will define the main theoretical foundations underlying AES and we will detail why
it is considered a valid encryption algorithm over a relatively large cryptographic period.

2 Reminders on Galois groups

The AES uses computation on finite groups and particularly on Galois fields.
The algebraic definition of a field is assumed to be known to the reader. One can consult it in [1].

A Galois field is simply in mathematics, a finite field, that is to say a field provided with a finite number
of elements. An elementary algebra theorem states that the order (ie the number of elements) of such a
group can only be a power of a prime number p.

A Galois field is generally denoted GF (q) with q = pn , p is a prime number and q obviously is the order
of the group.

Another fundamental algebra theorem states that all finite fields of the same order are isomorphic. GF (p)
is therefore isomorphic to Z/pZ where Z is the ring of relative integers. For n ≥ 1 the representation of
GF (q) is more complex.(see [1])

The splitting field of the polynomial P : P (X) = Xq −X (or X ∈ GP (p))is a finite field (traditionally
called a Galois group) and has exactly q elements. It is therefore GF (q) (except for an isomorphism).
A proof of the fact that this group exists whatever n ≥ 1 can be found in [2] (§3, Theorem 3.3).

Many other constructions of GF (q) are possible. However, in the context of AES, the construction using
polynomials is the only one that is important. We will see in what follows how to construct GF (q) as a
field of polynomials whose degrees are strictly less than n.

3 Use of Galois groups within the framework of digital calculus

In order to be able to use the AES algorithm, we must for that, consider the algebraic field GF (p)[X]
of the polynomials on GF (p).

In addition, in the context of digital computation and data representation, we need to work with the
binary basis. This is possible if we consider the particular case where p = 2.

Using finite field arithmetic, and using an algebraic basis for GF (p)[X] (considered as a vector space
over GF (2) ), we can represent the elements of GF (2n) as binary numbers.
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For example the polynomial P (X) : P(X) = X7 + X3 + 1 has for coordinates (1, 0, 0, 1, 0, 0, 0, 0, 1) .
which gives the following binary representation:

10001001

That is to say the (natural) number 137.

It is therefore possible to define a multiplication and an addition on a certain finite subset of natural
numbers Nq = {0, 1, .., q − 1} , which will thus define an isomorphism between Nq and GF (q). the basic
idea is that, if n = 8, then Nq represents the set of hexadecimal numbers and therefore allows one byte
of information to be represented.

To explicitly construct GF (q) in this case, we must consider the ideal (P) generated by the polynomial
P : P (X) = Xq −X.

GF (q) is then defined as the quotient space: GF (p)[X]/(P )

P can be replaced by any other irreducible polynomial in GF (p)[X] provided it is primitive and minimal.

Concretely, there is no “universal" method to construct GF (q) and it is a difficult problem when n is
important. A general construction method exists for the case n = 2 for example but not for any value of
n.

However, as we indicated, AES only needs to know GF (28) . We will therefore explicit the construction
of this field.

4 Construction of GF(28)

In this precise case, P is chosen as the polynomial defined by P (X) = X8 +X4 +X3 +X + 1.

A construction method is to consider a "symbolic" root α of this polynomial.
This root is a generator of the group and thus, the elements of GF (28) can be written as a power of this
generator:

GF (28) =
{
1α..., α255

}
These elements are all polynomials with binary coefficients of degree at most equal to 7. It is therefore
easy to see that their total number is indeed equal to 28. It is not necessarily obvious that the order of
GF (p)[X]/(P ) is equal to p and that the elements describe the set of polynomials of GF (p)[X] of degree
strictly less than not. We can find a proof in ([2]).

There is a duality between the value of αs, 1 ≤ s ≤ 255 and a polynomial of GF (p)[X]/(P ).
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Polynomial value Binary value Numeric value (base
10)

α X 10 2

α2 X2 100 4

α3 X3 1000 8

α4 X4 10000 16

α5 X5 100000 32

α6 X6 1000000 64

α7 X7 10000000 128

α8 X4 +X3 +X + 1 00011011 27

α9 X5 +X4 + X2 +X 00110110 54

α10 X6 +X5 +X3 +X2 01101100 108

α11 X7 +X6 +X4 +X3 11011000 216

α12 X7 +X2 +X 10110000 + 00110110 = 1000
0110

134

.. etc ... ...

The elements of GF (28) are therefore calculated successively using the formula α8 = α4 + α3 + α + 1.
(we are on the base field GF (2) so any coefficient which is not zero is equal to 1!)

It is obviously possible to calculate all the 256 elements of the Galois field without having to resort to a
computer.

Once the elements of the field are known, we need to define the operations of addition and multiplication.
Due to the binary nature of the base body, these are greatly simplified compared to other finite fields.

5 Calculation on GF(28)

The addition is terribly simple. Let be two polynomials represented by, respectively

P = (x0,x1, x2, x3, x4, x5, x6, x7) and Q = (y0,y1, y2, y3, y4, y5, y6, y7) .
Then we will have P +Q = (x0 ∧ y0, x1 ∧ y1, x2 ∧ y2, x3 ∧ y3, x4 ∧ y4, x5 ∧ y5, x6 ∧ y6, x7 ∧ y7)
Where ∧ denote the operation XOR (actually the addition over Z/2Z but it’s a more natural way of
looking at it in this context) .

Multiplication is, on the other hand, more complicated.

PQ = R with: P (X)Q(X) = R(X)Mod(X8 +X4 +X3 +X + 1)

That is, R is the remainder of the Euclidean division of PQ by the polynomial X8 +X4 +X3 +X + 1.

These operations now allow us to perform encryption (and therefore also decryption) on bytes by repre-
senting them by their associated polynomials.
Note that AES is only one of the many algorithms using that technique.

As an example consider the following two polynomials:

P : P (X) = X7 +X3 + 1 and Q : Q(X) = X5 +X4 +X3 + 1
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We have: P +Q = S : S(X) = X7 +X5 +X4

P (X)Q(X) = X12 +X11 +X10 +X7 +X8 +X7 +X6 +X3 +X5 +X4 +X3 + 1
P (X)Q(X) = X12 +X11 +X10 +X8 +X6 +X5 +X4 + 1
P (X)Q(X) = (X4 +X3 +X2)(X8 +X4 +X3 +X + 1) + (X6 +X5 +X4 +X2 + 1)

This means that P.Q = R : R(X) = X6 +X5 +X4 +X2 + 1

If we consider these polynomials as numbers, we get:

10001001+00111001 = 10110000
10001001.00111001 = 01110101

Which gives us, in the end:

137+57 = 176
137.57 = 117

As always in finite fields, calculating the inverse of a number is a particularly non-trivial and absolutely
non-linear operation. It is this property which is used mainly in the AES algorithm to guarantee a higher
security.

6 The AES

6.1 Architecture

The encryption / decryption algorithm mainly uses the principles of confusion and diffusion (substitution
and permutation). It is a symmetric encryption algorithm, which means that the same key is used for
encryption and for decryption. The algorithm works only on bytes and not on bits like the DES.

The heart of the security of the algorithm, and what makes it safe, consists in the use of substitution
tables, the “S-Box". As with DES, these tables are designed to maximize the difficulty of a cryptanalysis.
However, and this is the big difference with DES, these substitution tables use the inversion in the Galois
group G(28).

The AES encryption key is used to generate a number of subkeys by deriving from the initial key; these
subkeys will encrypt or decrypt data at each round.

AES uses a number of successive rounds over a block of operations.
This basic block of operations is itself made up of 3 operations:

• Substitution;

• Shifting of lines;

• Mixing Columns ;

For encryption.

• Inverse substitution;

• Inverse Shifting lines;

• Inverse Mixing Columns;
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For decryption.

Depending on whether one is in encryption or in decryption , these operations will not be done in the
same order. In addition, the derived keys will be introduced during the course of the rounds.

The introduction of the derived keys is in itself a fourth operation.

The data is encrypted in blocks of 128 bits, i.e. 16 bytes. Each block of data is formatted as a square of
bytes of size 4x4.

This square is called the state. The state is transformed as and when the transformations it undergoes:
substitution, shifting of rows or mixing of columns as well as during the introduction of derived keys.
This is obviously the principle of all the encryption and all of the decryption of the AES: transforming
the state so that the block of data is encrypted or decrypted. If we name fi, i = 1...N the successive
encryption operations, we have the successive states C = C0, C1 = f1(C0)...., CN = fN (CN−1). CN = E
where E is the ciphering of C.

If the starting block to be encrypted or decrypted is represented by bytes a1...a16, the state C = C0 will
be defined by:

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

a4 a8 a12 a16

After the N successive operations of the AES the state E = CN will have a certain value

a1’ a5’ a9’ a13’

a′2 a6’ a10’ a14’

a3’ a7’ a11’ a15’

a4’ a8’ a12’ a16’

And the encryption / decryption of the starting block of bytes is simply defined by:

a1...a16 → a′1...a
′
16

6.2 Substitution

The substitution is based on a substitution table named S-BOX.

A substitution table has the goal to “break" any possible linearity.

The construction of substitution tables is often done using Boolean functions called bent functions. These
functions have the particularity of being at a maximum distance from the set of linear Boolean functions.
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6.2.1 Reminder on the bent functions

If d is a distance for the numerical functions on the vector space GF (2)n: f : GF (2)n → N , we define
the numerical function r : f →

∑
g∈L d(f, g) where L is the subspace of the digital linear functions of

GF (2)n.

We define the set of curves C functions f ∈ C ⇒ r(f) < r(f)f /∈C.

Usually d is defined as the Hamming distance.

d : d(f, g) = card {x ∈ GF (2)n, f(x) 6= g(x)}.

There are equivalent definitions of bent functions. For example, f is a bent function if the Fourier
transform F (λ) of x→ −1f(x)is such that: |F (λ)| = 1, λ ∈ GF (2n) or if the Walsh-Hadamard transform
of f is such that: |wf (ω)| = 2n/2. This transform makes it possible to measure the correlation between
f and the linear functions.

Bent functions are often the “heart" of the complexity of symmetric cipher algorithms. Indeed, they are
designed to resist linear cryptanalysis since they cannot be approximated by linear functions and they
are therefore used to construct the S-boxes (substitution tables) which will carry out the diffusion of the
bytes in a chaotic manner.

Given their fundamental character in cryptography, they are often the subject of in-depth studies. There
are several techniques for constructing such functions. The most classic is the Maiorana MCFarland
technique (see [3] for a complete overview on the use of bent functions in cryptography).

6.2.2 The AES substitution table

The AES does not use bent functions for substitution operations, it mainly uses the inversion on GF (28)
(which is of course different from a Boolean function which would be defined using a formula on GF (2)8
!)

This inversion2 is combined with an affine operation as follows:

1. x→ x−1(= x255), x ∈ GF (256)∗ (and 0−1 = 0)

2. x→ A.x+ b

Where A is the following matrix of GL (GF (256)):

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

2The inversion is understood with the convention that the inverse of 0 is 0.
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And b is the number 63 in GF (256), that is to say (0,1,1,0,0,0,1,1)

The substitution table of the AES is therefore relatively simple, which has often been criticized, but this
simplicity ensures, finally, a great robustness.

The substitution table can therefore be represented as follows:

Each input byte is broken down into two nibbles: respectively nibble of the 4 most significant bits and
4 least significant bits. The output value is read using the two nibbles as, respectively, column and row.

For example the byte 0x43 is transformed into the byte 0x18, which corresponds to the value of the table
for row 3 and column 4.

6.3 Rows shifting

Substitution (confusion) is generally not sufficient. This is because it does not distribute the data evenly.
For that, it is necessary to have recourse to operations of diffusion. This diffusion can be carried out by
permutation operations, which can use permutation tables or P-BOX. These tables allow compression
and expansion. For example, they can broadcast the result of an S-BOX output to r inputs of another
S-BOX, making r copies each time, where r is any number.

The formula for the row offset is very simple, it is:

Si,j → Si,ji where Si,j , 0 ≤ (i, j) ≤ 3 is an element of the report. ji is of course to be taken in the
context of modulo 4 operations.

This operation is represented graphically as follows:

a1 a5 a9 a13 a1 a5 a9 a13

a2 a6 a10 a14 → a6 a10 a14 a2

a3 a7 a11 a15 a11 a15 a3 a7

a4 a8 a12 a16 a16 a4 a8 a12
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6.4 Column mixing
The column mixing operation is a little more complex than that of row shifting.

Each column of the state is seen as a vector Cj , j = 0, .., 3 of GF (256)4. The linear transformation
defined by the following matrix is applied to it:

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

This linear transformation will linearly mix each of the columns of the report using only its own elements.

In fact, this linear transformation can also be written:

Si,j = 2Si,j + Si+1,j + Si+2,j + 3Si+3,j

Attention: The calculation is to be understood in GF (256).

6.5 Generation and insertion of derived keys
6.5.1 Generation of derived keys

Until now we have not considered the operations implementing the encryption key. It is obviously
necessary that the encryption key be introduced during the operations described above.

To do this, the AES uses an algorithm for deriving the keys which are introduced as the rounds are
carried out. It is about a “planning" of use of the keys named the AES key schedule.

It is useful to remember that the AES only allows three key lengths: respectively 128, 196 and 256 bits.

Let us take the case of a key of length 128 bits. The 16 bytes of the keyK1, ...,K16 are distributed in a
box in the same way as for the report.

K1 K5 K9 K13

K2 K6 K10 K14

K3 K7 K11 K15

K4 K8 K12 K16
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Each of the columns defines a word and thus the key can be represented by a series of 4 words:
w0, w1, w2.w3.

The 4 words are extended to a series of 44 words w0, w1, w2.w3, w4, ..., w43 as follows:

The diagram above recursively calculates the 44 words from the initial sequence w0, w1, w2.w3.

The XOR operation is represented in the diagram by the usual symbol ⊕.
The value g = g(wi+3) is calculated as follows:

1. A one-byte rotation to the left.

wi+3 = (a0, a1, a2, a3)→ (a1, a2, a3, a0)

2. The substitution of the 4 bytes via the S-BOX substitution table of the AES which has been
described previously

3. Finally, an XOR operation of the leftmost byte with a certain constant, called the round constant.
This constant is determined by the following formula:

RCi = 2i−1 in GF (256). We give the table of its values below.

i 1 2 3 4 5 6 7 8 9 10

RCi 01 02 04 08 10 20 40 80 1B 36

6.5.2 Insertion of the derived keys

Once the 44 words have been generated (in the case of a 128-bit key), you must insert them into the
cryptographic stream so that, of course, without knowing this key it is impossible to correctly encrypt /
decrypt a message.

The integration of the keys is very simple: the 44 words form a series of 11 groups of 4 words, and each
time a key is inserted (represented by 4 words in a row), the state is transformed by an operation of or
exclusive ( XOR) with the 4 words3.

3This is a one-time pad since both parts have an equal length of 16 bytes
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Ci−1 ⊕ (w4i, w4i+1, w4i+2, w4i+3)→ Ci−1 where Ci is the state in the ith round.

If we consider different key lengths, the principle remains the same, except that there are more words
generated and therefore more rounds.

7 Complete Structure of AES

7.1 Encryption

We can now represent the complete diagram of operation of AES in the case of a 128-bits encryption
key. For the case of 196-bits and 256-bits keys, the pattern remains similar, with the difference in the
number of rounds which is greater.

Each round of the AES is done with the same “box" which contains the operations we have seen above,
except for the last round where there is no column shift.
In the case of a 128-bit key, there are 10 rounds and 11 key inserts.
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7.2 Decryption

All the operations that we have seen are invertible:

• All the matrices considered are invertible (they have a non-zero determinant)

• The inversion on a body is obviously an invertible operation (it is even involutive)

• The operations of or exclusive (XOR) are also invertibles (involutive)

It is therefore possible to follow the opposite path to find, from an encrypted text, the original text.
The operation of mixing columns is omitted in the last round, which is justified by the desire to give the
decryption a design similar to the encryption. Not only would this not affect the security of the AES,
but it would make it more resistant to certain types of attacks (see [5]).

The decryption scheme therefore consists in using the encryption scheme but ’backwards’.
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8 Security of AES

Unlike DES, AES uses finite group computation which means that the mathematical properties intrinsic
to modular computation will be added to the diffusion and confusion properties to reinforce the encryption
security. This makes this encryption algorithm a somewhat “hybrid" mechanism.

The key planning system also prevents the appearance of weak keys, which is an advantage over DES.

Ultimately, AES appears as a “reinforced" DES and which corrects the flaws of the latter, for example,
with better substitution tables.

At this moment in time, AES is considered safe. Its design and the length of the encryption keys give it
better security than DES. For the moment, it has withstood all the attacks proposed by cryptanalysts and
in particular attacks using statistical analysis. However, with advances in cryptanalysis, advancements
in quantum computers, and the use of artificial intelligence and neural networks for cracking ciphers, it
will eventually become obsolete one day or another.

But this is another story.
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